

Exaton 20.25.5.LCuR

Exaton 20.25.5.LCuR is a covered electrode with type with rutile-basic coating and normal recovery, used for welding of high-alloy austenitic stainless of UNS N08904 type, also known as 904L (e.g. Alleima 2RK65). Exaton 20.25.5.LCuR gives a fully austenitic chromium-nickel-molybdenum weld metal with especially low carbon content and copper addition. Spray transfer gives a bead with a finely rippled surface, little spatter and good slag removal. It is suitable for joining steels of the 20Cr/25Ni/4.5Mo/1.5Cu type such as 904L (e.g. Alleima 2RK65) used in many areas of the process industry, such as in the production of acetic acid, sulphuric acid, terephthalic or tartaric acid and vinyl chloride as well as other chloride containing media. It is also suitable for use in cooling operations involving sea water or heavily polluted river water. Exaton 20.25.5.LCuR may also be used to join 317L where improved corrosion resistance in specific media is required. These electrodes may be used to join Alleima 2RK65, 904L and 317L to other grades of stainless steel.

Specifications				
Classifications	EN ISO 3581-A : E 20 25 5 Cu N L R 3 2 SFA/AWS A5.4 : E385-16 Werkstoffnummer : 1.4519			
Approvals	CE : EN 13479 VdTÜV : 02805			

Approvals are based on factory location. Please contact ESAB for more information.

Welding Current	AC, DC+
Ferrite Content	FN 0
Alloy Type	Austenitic CrNiMo
Coating Type	Basic Rutile

Tensile_Properties						
Testing Condition Yield Strength Tensile Strength Elongation						
ISO						
As Welded	410 MPa	590 MPa	35 %			

Charpy Testing					
Testing Condition Testing Temp Impact Value					
ISO					
As Welded	20 °C	65 J			

Typical Weld Metal Analysis %									
С	Mn	Si	S	Р	Ni	Cr	Мо	Cu	N
0.03	1	0.5	0.005	0.019	25	20	4.7	1.5	0.10

Typical Weld Metal Analysis %	
FN WRC-92	PREN
0	36

Deposition Data					
Diameter	Amps	Volts	Efficiency (Per)	Fusion time per electrode at 90Per I max	Deposition rate at 90Per
2.5 x 300.0 mm	60-85 A	24 V	60 %	44 sec	0.9 kg/h
3.2 x 350.0 mm	85-130 A	27 V	58 %	60 sec	1.5 kg/h
4.0 x 350.0 mm	95-180 A	29 V	51 %	64 sec	1.9 kg/h