

OK Tigrod 5087

Bare welding rod suitable for welding of aluminium alloys with up to 5 % Mg and alloys where a higher tensile strength is required. The alloying element Zr gives improved properties against hot cracking during solidification.

Specifiche				
Classificazioni	SFA/AWS A5.10 : R5087 EN ISO 18273 : S AI 5087 (AIMg4,5MnZr)			
Omologazioni	CE : EN 13479 DB : 61.039.08 VdTÜV : 05796			

Le approvazioni si basano sulla posizione della fabbrica. Si prega di contattare ESAB per ulteriori informazioni.

Tipo di lega	AIMgMn
Gas di protezione	I1, I2, I3 (EN ISO 14175)

Propriet tensili tipiche						
Stato	Resistenza allo snervamento	Resistenza alla trazione	Allungamento			
Come saldato	130 MPa	280 MPa	30 %			

Propriet prova Charpy con intaglio a V					
Stato	Temperatura di prova	Valore tenacit			
Come saldato	20 °C	35 J			

Typical Wire Composition %									
Mn	Si	Cr	Al	Cu	Ti	Zn	Zr	Fe	Mg
0.8	0.04	0.08	Rem	0.01	0.08	0.01	0.11	0.12	4.7